A Local Characterization of Darboux S Functions
نویسندگان
چکیده
A. M. Bruckner and J. B. Bruckner gave the definition of Darboux 53 functions and proved a theorem which is a local characterization of real-valued Darboux 58 functions. The purpose of this paper is to generalize this theorem. To this end, the definition of a function being Darboux S at a point is given which has a metric continuum as its range. Hence, the theorem that a function is Darboux 8 if and only if it is Darboux 53 at each point.
منابع مشابه
Characterization of the Darboux Point for Particular Classes of Problems 1
A minimal sufficient condition for global optimality involving the Darboux point, analogous to the minimal sufficient condition of local optimality involving the conjugate point, is presented. The Darboux point is then characterized for optimal control problems with linear dynamics, cost functionals with a general terminal state term and an integrand quadratic in the state and control, and gene...
متن کاملExplicit multiple singular periodic solutions and singular soliton solutions to KdV equation
Based on some stationary periodic solutions and stationary soliton solutions, one studies the general solution for the relative lax system, and a number of exact solutions to the Korteweg-de Vries (KdV) equation are first constructed by the known Darboux transformation, these solutions include double and triple singular periodic solutions as well as singular soliton solutions whose amplitude d...
متن کاملSums of Darboux and continuous functions
It is shown that for every Darboux function F there is a non-constant continuous function f such that F + f is still Darboux. It is shown to be consistent—the model used is iterated Sacks forcing—that for every Darboux function F there is a nowhere constant continuous function f such that F + f is still Darboux. This answers questions raised in [5] where it is shown that in various models of se...
متن کاملOn the Convex Pfaff-darboux Theorem of Ekeland and Nirenberg
The classical Pfaff-Darboux Theorem, which provides local ‘normal forms’ for 1-forms on manifolds, has applications in the theory of certain economic models [3]. However, the normal forms needed in these models come with an additional requirement of convexity, which is not provided by the classical proofs of the Pfaff-Darboux Theorem. (The appropriate notion of ‘convexity’ is a feature of the e...
متن کاملA CHARACTERIZATION OF EXTREMELY AMENABLE SEMIGROUPS
Let S be a discrete semigroup, m (S) the space of all bounded real functions on S with the usualsupremum norm. Let Acm (S) be a uniformly closed left invariant subalgebra of m (S) with 1 c A. We say that A is extremely left amenable if there isamultiplicative left invariant meanon A. Let P = {h ?A: h =|g-1,g | forsome g ?A, s ?S}. It isshown that . A is extremely left amenable if and only ...
متن کامل